Your browser doesn't support javascript.
loading
Electron-deficient Co7Fe3 induced by interfacial effect of molybdenum carbide boosting oxygen evolution reaction.
Huang, Weixiong; Ma, Haiyan; Qi, Jiaou; Xu, Junjie; Ding, Yue; Zhu, Shufang; Lu, Lilin.
Afiliación
  • Huang W; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
  • Ma H; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
  • Qi J; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
  • Xu J; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
  • Ding Y; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
  • Zhu S; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
  • Lu L; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,
J Colloid Interface Sci ; 669: 95-103, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38705116
ABSTRACT
Developing a high-activity and low-cost catalyst to reduce the anodic overpotential is essential for hydrogen production from water splitting. In this work, a hetero-structured Co7Fe3/Mo2C@C catalyst has been developed to efficiently catalyze oxygen evolution reaction (OER), the overpotential (ƞ10) of Co7Fe3/Mo2C@C-catalyzed OER with current density of 10 mA/cm2 is about 254 mV, substantially lower than the counterparts of Co7Fe3@C-catalyzed OER (ƞ10, 308 mV) and Mo2C@C-catalyzed OER (ƞ10, 439 mV), close to that of OER catalyzed by commercial RuO2. The mechanistic studies reveal that the distinct electron transfer across the Co7Fe3/Mo2C interface results in electron-deficient Co7Fe3, which has been identified as the highly active catalytic sites. Density functional theory (DFT) calculations manifest that Mo2C induces a distinct decrease in electron density on Co7Fe3 and upgrades the d-band centers of Co and Fe in Co7Fe3 towards Fermi energy level, thus substantially lowering the energy barrier of the rate-determining reaction step and conferring significantly improved OER activity on the Co7Fe3/Mo2C@C catalyst.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article
...