Your browser doesn't support javascript.
loading
Aqueous Developable and CO2-Sourced Chemical Amplification Photoresist with High Performance.
Lu, Xin-Yu; Zhang, Rui-Sheng; Yang, Guan-Wen; Li, Qiang; Li, Bo; Wu, Guang-Peng.
Afiliación
  • Lu XY; MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
  • Zhang RS; MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
  • Yang GW; MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
  • Li Q; State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
  • Li B; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
  • Wu GP; MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Angew Chem Int Ed Engl ; 63(32): e202401850, 2024 Aug 05.
Article en En | MEDLINE | ID: mdl-38706222
ABSTRACT
Seeking high-performance photoresists is an important item for semiconductor industry due to the continuous miniaturization and intelligentization of integrated circuits. Polymer resin containing carbonate group has many desirable properties, such as high transmittance, acid sensitivity and chemical formulation, thus serving as promising photoresist material. In this work, a series of aqueous developable CO2-sourced polycarbonates (CO2-PCs) were produced via alternating copolymerization of CO2 and epoxides bearing acid-cleavable cyclic acetal groups in the presence of tetranuclear organoborane catalyst. The produced CO2-PCs were investigated as chemical amplification resists in deep ultraviolet (DUV) lithography. Under the catalysis of photogenerated acid, the acetal (ketal) groups in CO2-PC were hydrolysed into two equivalents of hydroxyl groups, which change the exposed area from hydrophobicity to hydrophilicity, thus enabling the exposed area to be developed with water. Through normalized remaining thickness analysis, the optimal CO2-derived resist achieved a remarkable sensitivity of 1.9 mJ/cm2, a contrast of 7.9, a favorable resolution (750 nm, half pitch), and a good etch resistance (38 % higher than poly(tert-butyl acrylate)). Such performances outperform commercial KrF and ArF chemical amplification resists (i.e., polyhydroxystyrene-derived and polymethacrylate-based resists), which endows broad application prospects in the field of DUV (KrF and ArF) and extreme ultraviolet (EUV) lithography for nanomanufacturing.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China
...