Your browser doesn't support javascript.
loading
Population-level insights into temporal interference for focused deep brain neuromodulation.
Yatsuda, Kanata; Yu, Wenwei; Gomez-Tames, Jose.
Afiliación
  • Yatsuda K; Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan.
  • Yu W; Center for Frontier Medical Engineering, Chiba University, Chiba, Japan.
  • Gomez-Tames J; Center for Frontier Medical Engineering, Chiba University, Chiba, Japan.
Front Hum Neurosci ; 18: 1308549, 2024.
Article en En | MEDLINE | ID: mdl-38708141
ABSTRACT
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Hum Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Hum Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Japón
...