Your browser doesn't support javascript.
loading
Tumor-derived nanovesicles enhance cancer synergistic chemo-immunotherapy by promoting cGAS/STING pathway activation and immunogenetic cell death.
Guo, Yawen; Qian, Ruijie; Li, Zijie; Lv, Tingting; Yang, Chunwang; Li, Wen; Pan, Teng; Hou, Xiaoming; Wang, Zhiyu.
Afiliación
  • Guo Y; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Qian R; Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China.
  • Li Z; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Lv T; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Yang C; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Li W; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Pan T; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Hou X; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
  • Wang Z; Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China. Electronic address: drwangzhiyu@hebmu.edu.cn.
Life Sci ; 348: 122687, 2024 Jul 01.
Article en En | MEDLINE | ID: mdl-38718856
ABSTRACT

AIMS:

Checkpoint blockade immunotherapy is a promising therapeutic modality that has revolutionized cancer treatment; however, the therapy is only effective on a fraction of patients due to the tumor environment. In tumor immunotherapy, the cGAS-STING pathway is a crucial intracellular immune response pathway. Therefore, this study aimed to develop an immunotherapy strategy based on the cGAS-STING pathway. MATERIALS AND

METHODS:

The physicochemical properties of the nanoparticles EM@REV@DOX were characterized by TEM, DLS, and WB. Subcutaneous LLC xenograft tumors were used to determine the biodistribution, antitumor efficacy, and immune response. Blood samples and tissues of interest were harvested for hematological analysis and H&E staining.

SIGNIFICANCE:

Overall, our designed nanovesicles provide a new perspective on tumor immunotherapy by ICD and cGAS-STING pathway, promoting DCs maturation, macrophage polarization, and activating T cells, offering a meaningful strategy for accelerating the clinical development of immunotherapy. KEY

FINDINGS:

EM@REV@DOX accumulated in the tumor site through EPR and homing targeting effect to release REV and DOX, resulting in DNA damage and finally activating the cGAS-STING pathway, thereby promoting DCs maturation, macrophage polarization, and activating T cells. Additionally, EM@REV@DOX increased the production of pro-inflammatory cytokines (e.g., TNF-α and IFN-ß). As a result, EM@REV@DOX was effective in treating tumor-bearing mice and prolonged their lifespans. When combined with αPD-L1, EM@REV@DOX significantly inhibited distant tumor growth, extended the survival of mice, and prevented long-term postoperative tumor metastasis, exhibiting great potential in antitumor immunotherapy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Inmunoterapia / Proteínas de la Membrana / Nucleotidiltransferasas Límite: Animals / Female / Humans Idioma: En Revista: Life Sci Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Inmunoterapia / Proteínas de la Membrana / Nucleotidiltransferasas Límite: Animals / Female / Humans Idioma: En Revista: Life Sci Año: 2024 Tipo del documento: Article
...