Your browser doesn't support javascript.
loading
Electrochemical DNA-nano biosensor for the detection of Goserelin as anticancer drug using modified pencil graphite electrode.
Laylani, Layla Abd-Al-Sattar Sadiq; Al-Dolaimy, F; Altharawi, Ali; Sulaman, Ghasen M; Mustafa, Mohammed Ahmed; Alkhafaji, Adnan Taan; Alkhatami, Ali G.
Afiliación
  • Laylani LAS; Community Health Department, Kirkuk Technical Institute, Northern Technical University, Mosul, Iraq.
  • Al-Dolaimy F; Community Health Department, Al-Zahraa University for Women, Karbala, Iraq.
  • Altharawi A; Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
  • Sulaman GM; Department of Medical Laboratories, Sawa University, Almuthana, Iraq.
  • Mustafa MA; Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
  • Alkhafaji AT; Cardiology Department, College of Medicine, Al-Ayen University, Thi-Qar, Iraq.
  • Alkhatami AG; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
Front Oncol ; 14: 1321557, 2024.
Article en En | MEDLINE | ID: mdl-38751811
ABSTRACT
Goserelin is an effective anticancer drug, but naturally causes several side effects. Hence the determination of this drug in biological samples, plays a key role in evaluating its effects and side effects. The current studies have concentrated on monitoring Goserelin using an easy and quick DNA biosensor for the first time. In this study, copper(II) oxide nanoparticles were created upon the surface of multiwalled carbon nanotubes (CuO/MWCNTs) as a conducting mediator. The modified pencil graphite electrode (ds-DNA/PA/CuO/MWCNTs/PGE) has been modified with the help of polyaniline (PA), ds-DNA, and CuO/MWCNTs nanocomposite. Additionally, the issue with the bio-electroanalytical guanine oxidation signal in relation to ds-DNA at the surface of PA/CuO/MWCNTs/PGE has been examined to determination Goserelin for the first time. It also, established a strong conductive condition to determination Goserelin in nanomolar concentration. Thus, Goserelin's determining, however, has a 0.21 nM detection limit and a 1.0 nM-110.0 µM linear dynamic range according to differential pulse voltammograms (DPV) of ds-DNA/PA/CuO/MWCNTs/PGE. Furthermore, the molecular docking investigation highlighted that Goserelin is able to bind ds-DNA preferentially and supported the findings of the experiments. The determining of Goserelin in real samples has been effectively accomplished in the last phase using ds-DNA/PA/CuO/MWCNTs/PGE.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Oncol Año: 2024 Tipo del documento: Article País de afiliación: Irak

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Oncol Año: 2024 Tipo del documento: Article País de afiliación: Irak
...