Your browser doesn't support javascript.
loading
Endocrine-Disrupting Chemical Exposure Induces Adverse Effects on the Population Dynamics of the Indo-Pacific Humpback Dolphin.
Luo, Dingyu; Guo, Yongwei; Liu, Zhiwei; Guo, Lang; Wang, Hongri; Tang, Xikai; Xu, Zhuo; Wu, Yuping; Sun, Xian.
Afiliación
  • Luo D; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Guo Y; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Liu Z; School of Ecology, Sun Yat-sen University, Guangzhou 510275, China.
  • Guo L; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Wang H; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Tang X; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Xu Z; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Wu Y; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
  • Sun X; School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and
Environ Sci Technol ; 58(21): 9102-9112, 2024 May 28.
Article en En | MEDLINE | ID: mdl-38752859
ABSTRACT
Cetaceans play a pivotal role in maintaining the ecological equilibrium of ocean ecosystems. However, their populations are under global threat from environmental contaminants. Various high levels of endocrine-disrupting chemicals (EDCs) have been detected in cetaceans from the South China Sea, such as the Indo-Pacific humpback dolphins in the Pearl River Estuary (PRE), suggesting potential health risks, while the impacts of endocrine disruptors on the dolphin population remain unclear. This study aims to synthesize the population dynamics of the humpback dolphins in the PRE and their profiles of EDC contaminants from 2005 to 2019, investigating the potential role of EDCs in the population dynamics of humpback dolphins. Our comprehensive analysis indicates a sustained decline in the PRE humpback dolphin population, posing a significant risk of extinction. Variations in sex hormones induced by EDC exposure could potentially impact birth rates, further contributing to the population decline. Anthropogenic activities consistently emerge as the most significant stressor, ranking highest in importance. Conventional EDCs demonstrate more pronounced impacts on the population compared to emerging compounds. Among the conventional pollutants, DDTs take precedence, followed by zinc and chromium. The most impactful emerging EDCs are identified as alkylphenols. Notably, as the profile of EDCs changes, the significance of conventional pollutants may give way to emerging EDCs, presenting a continued challenge to the viability of the humpback dolphin population.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinámica Poblacional / Delfines / Disruptores Endocrinos Límite: Animals Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinámica Poblacional / Delfines / Disruptores Endocrinos Límite: Animals Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article
...