Your browser doesn't support javascript.
loading
Micromechanical origin of heat transfer to granular flow.
Zhang, Xintong; Adapa, Sarath; Feng, Tianshi; Zeng, Jian; Chung, Ka Man; Ho, Clifford; Albrecht, Kevin; Chen, Renkun.
Afiliación
  • Zhang X; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
  • Adapa S; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
  • Feng T; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
  • Zeng J; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
  • Chung KM; Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, USA.
  • Ho C; Concentrating Solar Technologies Department, Sandia National Laboratories, 1515 Eubank Boulevard SE, Albuquerque, New Mexico 87123, USA.
  • Albrecht K; Concentrating Solar Technologies Department, Sandia National Laboratories, 1515 Eubank Boulevard SE, Albuquerque, New Mexico 87123, USA.
  • Chen R; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
Phys Rev E ; 109(4): L042902, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38755816
ABSTRACT
Heat transfer across a granular flow is comprised of two resistances in series near the wall and within the bulk particle bed, neither of which is well understood due to the lack of experimental probes to separate their respective contribution. Here, we use a frequency modulated photothermal technique to separately quantify the thermal resistances in the near-wall and the bulk bed regions of particles in flowing states. Compared to the stationary state, the flowing leads to a higher near-wall resistance and a lower thermal conductivity of bulk beds. Coupled with discrete element method simulation, we show that the near-wall resistance can be explained by particle diffusion in granular flows.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...