Your browser doesn't support javascript.
loading
OsBBP1, a newly identified protein containing DUF630 and DUF632 domains confers drought tolerance in rice.
Yu, Xiangzhen; Wang, Lanning; Xie, Yunjie; Zhu, Yongsheng; Xie, Hongguang; Wei, Linyan; Xiao, Yanjia; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu.
Afiliación
  • Yu X; College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecu
  • Wang L; College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecu
  • Xie Y; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Zhu Y; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Xie H; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Wei L; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Xiao Y; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Cai Q; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Chen L; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R.
  • Xie H; College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecu
  • Zhang J; College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecu
Plant Sci ; 345: 112119, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38759757
ABSTRACT
Domain of unknown function (DUF) protein families, which are uncharacterized and numerous within the Pfam database. Recently, studies have demonstrated that DUFs played crucial roles in plant development, but whether, or how, they function in drought resistance remain unclear. In this study, we identified the Os03g0321500 gene, encoding OsbZIP72 binding protein 1 (OsBBP1), as a target of OsbZIP72 using chromatin immunoprecipitation sequencing in rice. OsBBP1 is a novel member of DUFs, which localize both in the nuclei and cytoplasm of rice protoplasts. Furthermore, yeast one-hybrid and electrophoretic mobility shift assays confirmed the specific binding between OsbZIP72 and OsBBP1. Additionally, a luciferase reporter analysis illustrated that OsbZIP72 activated the expression of OsBBP1. Drought tolerance experiments demonstrate that the OsBBP1 CRISPER-CAS9 transgenic mutants were sensitive to drought stress, but the transgenic OsBBP1 over-expressing rice plants showed enhanced drought resistance. Moreover, drought tolerance experiments in a paddy field suggested that OsBBP1 contributed to less yield or yield-related losses under drought conditions. Mechanistically, OsBBP1 might confer drought resistance by inducing more efficient reactive oxygen species (ROS) scavenging. Several ROS scavenging-related genes showed increased expression levels in OsBBP1 overexpression lines and decreased expression levels in OsBBP1 CRISPER-CAS9 mutants under drought conditions. Thus, OsBBP1, acting downstream of OsbZIP72, contributes to drought resistance and causes less yield or yield-related losses under drought conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Oryza / Sequías Idioma: En Revista: Plant Sci Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Oryza / Sequías Idioma: En Revista: Plant Sci Año: 2024 Tipo del documento: Article
...