Your browser doesn't support javascript.
loading
Multi-component Copolymerized Donors enable Frozen Nano-morphology and Superior Ductility for Efficient Binary Organic Solar Cells.
Lin, Congqi; Peng, Ruixiang; Song, Wei; Chen, Zhenyu; Feng, Tingting; Sun, Dinghong; Bai, Yongqi; Ge, Ziyi.
Afiliación
  • Lin C; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Peng R; Faculty of Materials and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China.
  • Song W; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Chen Z; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Feng T; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Sun D; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Bai Y; Faculty of Materials and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China.
  • Ge Z; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Angew Chem Int Ed Engl ; 63(31): e202407040, 2024 Jul 29.
Article en En | MEDLINE | ID: mdl-38761056
ABSTRACT
Multi-component copolymerized donors (MCDs) have gained significant interest and have been rapidly developed in flexible organic solar cells (f-OSCs) in recent years. However, ensuring the power conversion efficiency (PCE) of f-OSCs while retaining ideal mechanical properties remains an enormous challenge. The fracture strain (FS) value of typical high-efficiency blend films is generally less than 8 %, which is far from the application standards of wearable photovoltaic devices. Therefore, we developed a series of novel MCDs after meticulous molecular design. Among them, the consistent MCD backbone and end-capped functional group formed a highly conjugated molecular plane, and the solubilization and mechanical properties were effectively optimized by modifying the proportion of solubilized alkyl chains. Consequently, due to the formation of entangled structures with a frozen blend film morphology considerably improved the high ductility of the active layer, P10.8/P20.2-TCl exhibited efficient PCE in rigid (18.53 %) and flexible (17.03 %) OSCs, along with excellent FS values (16.59 %) in pristine films, meanwhile, the outstanding FS values of 25.18 % and 12.3 % were achieved by P10.6/P20.4-TCl -based pristine and blend films, respectively, which were one of the highest records achieved by end-capped MCD-based binary OSCs, demonstrating promising application to synchronize the realization of high-efficiency and mechanically ductile flexible OSCs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article
...