Your browser doesn't support javascript.
loading
Fermentation broth from fruit and vegetable waste works: Reducing the risk of human bacterial pathogens in soil by inhibiting quorum sensing.
Zhu, Lin; Li, Jingpeng; Yang, Jian; Li, Xiaodi; Lin, Da; Wang, Meizhen.
Afiliación
  • Zhu L; Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environme
  • Li J; Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environme
  • Yang J; Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environme
  • Li X; Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environme
  • Lin D; Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environme
  • Wang M; Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environme
Environ Int ; 188: 108753, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38761431
ABSTRACT
Fermentation broth from fruit and vegetable waste (FFVW) has demonstrated remarkable ability as a soil amendment and in reducing antibiotic resistance genes (ARGs) pollution. However, the potential of FFVW to mitigate other microbial contamination such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), which are closely associated with human health, remains unknown. In this study, metagenomic analysis revealed that FFVW reduced the HBPs with high-risk of ARGs and VFGs including Klebsiella pneumoniae (reduced by 40.4 %), Mycobacterium tuberculosis (reduced by 21.4 %) and Streptococcus pneumoniae (reduced by 38.7 %). Correspondingly, VFG abundance in soil decreased from 3.40 copies/cell to 2.99 copies/cell. Further analysis illustrated that these was mainly attributed to the inhibition of quorum sensing (QS). FFVW reduced the abundance of QS signals, QS synthesis genes such as rpaI and luxS, as well as receptor genes such as rpfC and fusK, resulting in a decreased in risk of ARGs and VFGs. The pure culture experiment revealed that the expression of genes related to QS, VFGs, ARGs and mobile genetic elements (MGEs) were downregulated in Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and K. pneumoniae treated by FFVW, consistent with the result of metagenomic analysis. This study suggested an environmentally friendly approach for controlling soil VFGs/ARGs-carrying HBPs, which is crucial for both soil and human health under the framework of "One Health".
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microbiología del Suelo / Verduras / Percepción de Quorum / Frutas Límite: Humans Idioma: En Revista: Environ Int Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microbiología del Suelo / Verduras / Percepción de Quorum / Frutas Límite: Humans Idioma: En Revista: Environ Int Año: 2024 Tipo del documento: Article
...