Engineered 3D Hydrogel Matrices to Modulate Trophoblast Stem Cell-Derived Placental Organoid Phenotype.
bioRxiv
; 2024 May 16.
Article
en En
| MEDLINE
| ID: mdl-38798435
ABSTRACT
Placental organoid models are a promising platform to study human placental development and function. Organoid systems typically use naturally derived hydrogel extracellular matrices (ECM), resulting in batch-to-batch variability that limits experimental reproducibility. As an alternative, synthetic ECM-mimicking hydrogel matrices offer greater consistency and control over environmental cues. Here, we generated trophoblast stem cell-derived placental organoids using poly(ethylene glycol) (PEG) hydrogels with tunable degradability and placenta-derived ECM cues to evaluate trophoblast differentiation relative to Matrigel and two-dimensional (2D) culture controls. Our data demonstrate that PEG hydrogels support trophoblast viability and metabolic function comparable to gold standard Matrigel. Additionally, phenotypic characterization via proteomic analysis revealed that PEG and Matrigel matrices drive syncytiotrophoblast and extravillous trophoblast-dominant placental organoid phenotypes, respectively. Further, three-dimensional (3D) environments promoted greater integrin expression and ECM production than 2D culture. This study demonstrates that engineered 3D culture environments can be used to reliably generate placental organoids and guide trophoblast differentiation.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
BioRxiv
Año:
2024
Tipo del documento:
Article