Your browser doesn't support javascript.
loading
Impact of Surface Composition Changes on the CO2-Reduction Performance of Au-Cu Aerogels.
Chauhan, Piyush; Georgi, Maximilian; Herranz, Juan; Müller, Gian; Diercks, Justus S; Eychmüller, Alexander; Schmidt, Thomas J.
Afiliación
  • Chauhan P; Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  • Georgi M; Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
  • Herranz J; Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  • Müller G; Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  • Diercks JS; Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  • Eychmüller A; Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
  • Schmidt TJ; Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
Langmuir ; 40(23): 12288-12300, 2024 Jun 11.
Article en En | MEDLINE | ID: mdl-38805399
ABSTRACT
Over the past decades, the electrochemical CO2-reduction reaction (CO2RR) has emerged as a promising option for facilitating intermittent energy storage while generating industrial raw materials of economic relevance such as CO. Recent studies have reported that Au-Cu bimetallic nanocatalysts feature a superior CO2-to-CO conversion as compared with the monometallic components, thus improving the noble metal utilization. Under this premise and with the added advantage of a suppressed H2-evolution reaction due to absence of a carbon support, herein, we employ bimetallic Au3Cu and AuCu aerogels (with a web thickness ≈7 nm) as CO2-reduction electrocatalysts in 0.5 M KHCO3 and compare their performance with that of a monometallic Au aerogel. We supplement this by investigating how the CO2RR-performance of these materials is affected by their surface composition, which we modified by systematically dissolving a part of their Cu-content using cyclic voltammetry (CV). To this end, the effect of this CV-driven composition change on the electrochemical surface area is quantified via Pb underpotential deposition, and the local structural and compositional changes are visually assessed by employing identical-location transmission electron microscopy and energy-dispersive X-ray analyses. When compared to the pristine aerogels, the CV-treated samples displayed superior CO Faradaic efficiencies (≈68 vs ≈92% for Au3Cu and ≈34 vs ≈87% for AuCu) and CO partial currents, with the AuCu aerogel outperforming the Au3Cu and Au counterparts in terms of Au-mass normalized CO currents among the CV-treated samples.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza
...