Your browser doesn't support javascript.
loading
Pharmaceutical Quality by Design Approach to Develop High-Performance Nanoparticles for Magnetic Hyperthermia.
Ansari, Shaquib Rahman; Suárez-López, Yael Del Carmen; Thersleff, Thomas; Häggström, Lennart; Ericsson, Tore; Katsaros, Ioannis; Åhlén, Michelle; Karlgren, Maria; Svedlindh, Peter; Rinaldi-Ramos, Carlos M; Teleki, Alexandra.
Afiliación
  • Ansari SR; Department of Pharmacy, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.
  • Suárez-López YDC; Department of Pharmacy, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.
  • Thersleff T; Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.
  • Häggström L; Department of Physics and Astronomy, Uppsala University, 75121 Uppsala, Sweden.
  • Ericsson T; Department of Physics and Astronomy, Uppsala University, 75121 Uppsala, Sweden.
  • Katsaros I; Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden.
  • Åhlén M; Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden.
  • Karlgren M; Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden.
  • Svedlindh P; Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden.
  • Rinaldi-Ramos CM; Department of Chemical Engineering and J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6005, United States.
  • Teleki A; Department of Pharmacy, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.
ACS Nano ; 18(23): 15284-15302, 2024 Jun 11.
Article en En | MEDLINE | ID: mdl-38814737
ABSTRACT
Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval. Therefore, we implemented a risk-based pharmaceutical quality by design (QbD) approach for SPION production using flame spray pyrolysis (FSP), a scalable technique with excellent batch-to-batch consistency. A design of experiments method enabled precise size control during manufacturing. Subsequent modeling linked the SPION size (6-30 nm) and composition to intrinsic loss power (ILP), a measure of hyperthermia performance. FSP successfully fine-tuned the SPION composition with dopants (Zn, Mn, Mg), at various concentrations. Hyperthermia performance showed a strong nonlinear relationship with SPION size and composition. Moreover, the ILP demonstrated a stronger correlation to coercivity and remanence than to the saturation magnetization of SPIONs. The optimal operating space identified the midsized (15-18 nm) Mn0.25Fe2.75O4 as the most promising nanoparticle for hyperthermia. The production of these nanoparticles on a pilot scale showed the feasibility of large-scale manufacturing, and cytotoxicity investigations in multiple cell lines confirmed their biocompatibility. In vitro hyperthermia studies with Caco-2 cells revealed that Mn0.25Fe2.75O4 nanoparticles induced 80% greater cell death than undoped SPIONs. The systematic QbD approach developed here incorporates process robustness, scalability, and predictability, thus, supporting the clinical translation of high-performance SPIONs for magnetic hyperthermia.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipertermia Inducida Límite: Humans Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipertermia Inducida Límite: Humans Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: Suecia
...