Your browser doesn't support javascript.
loading
Enhanced removal of ciprofloxacin and associated antibiotic-resistant genes from wastewater using a biological aeration filters in combination with Fe3O4-modified zeolite.
Ye, Minzhi; Jiang, Yiping; Qian, Laying; Qiu, Feng; Liu, Zhiquan; Wang, Zhu; Hu, Chun.
Afiliación
  • Ye M; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
  • Jiang Y; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Fuzhou Environmental Monitoring Center Station in Fujian Province, Fujian 350002, China.
  • Qian L; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
  • Qiu F; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
  • Liu Z; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China E-mail: zhiquanliu@gzhu.edu.cn.
  • Wang Z; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
  • Hu C; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
Water Sci Technol ; 89(10): 2839-2850, 2024 May.
Article en En | MEDLINE | ID: mdl-38822618
ABSTRACT
Antibiotics release into the water environment through sewage discharge is a significant environmental concern. In the present study, we investigated the removal of ciprofloxacin (CIP) in simulated sewage by biological aeration filter (BAF) equipped with Fe3O4-modified zeolite (Fe3O4@ZF). Fe3O4@ZF were prepared with impregnation method, and the Fe3O4 particles were successfully deposited on the surface of ZF in an amorphous form according to the results of XPS and XRD analysis. The modification also increased the specific surface area (from 16.22 m²/g to 22 m²/g) and pore volume (from 0.0047 cm³/g to 0.0063 cm³/g), improving the adsorption efficiency of antibiotics. Fe3O4 modified ZF improved the treatment performance significantly, and the removal efficiency of CIP in BAF-Fe3O4@ZF was 79%±2.4%. At 10ml/L CIP, the BAF-Fe3O4@ZF reduced the relative abundances of antibiotics resistance genes (ARGs) int, mexA, qnrB and qnrS in the effluent by 57.16%, 39.59%, 60.22%, and 20.25%, respectively, which effectively mitigate the dissemination risk of ARGs. The modification of ZF increased CIP-degrading bacteria abundance, such as Rhizobium and Deinococcus-Thermus, and doubled bacterial ATP activity, promoting CIP degradation. This study offers a viable, efficient method to enhance antibiotic treatment and prevent leakage via sewage discharge.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Ciprofloxacina / Zeolitas / Aguas Residuales / Antibacterianos Idioma: En Revista: Water Sci Technol Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Ciprofloxacina / Zeolitas / Aguas Residuales / Antibacterianos Idioma: En Revista: Water Sci Technol Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China
...