Your browser doesn't support javascript.
loading
Zinc oxide/graphene oxide nanocomposites specifically remediated Cd-contaminated soil via reduction of bioavailability and ecotoxicity of Cd.
Li, Yang; Cheng, Lei; Yang, Baolin; Ding, Yuting; Zhao, Yanan; Wu, Yuanyuan; Nie, Yaguang; Liu, Yun; Xu, An.
Afiliación
  • Li Y; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS,
  • Cheng L; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS,
  • Yang B; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS,
  • Ding Y; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS,
  • Zhao Y; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China.
  • Wu Y; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS,
  • Nie Y; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
  • Liu Y; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China. Electronic address: yliu@hm
  • Xu A; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS,
Sci Total Environ ; 940: 173641, 2024 Aug 25.
Article en En | MEDLINE | ID: mdl-38825205
ABSTRACT
From both environment and health perspectives, sustainable management of ever-growing soil contamination by heavy metal is posing a serious global concern. The potential ecotoxicity of cadmium (Cd) to soil and ecosystem seriously threatens human health. Developing efficient, specific, and long-term remediation technology for Cd-contaminated soil is impending to synchronously minimize the bioavailability and ecotoxicity of Cd. In the present study, zinc oxide/graphene oxide nanocomposite (ZnO/GO) was developed as a novel amendment for remediating Cd-contaminated soil. Our results showed that ZnO/GO effectively decreased the available soil Cd content, and increased pH and cation exchange capacity (CEC) in both Cd-spiked standard soil and Cd-contaminated mine field soil through the interaction between ZnO/GO and soil organic acids. Using Caenorhabditis elegans (C. elegans) as a model organism for soil safety evaluation, ZnO/GO was further proved to decrease the ecotoxicity of Cd-contaminated soil. Specifically, ZnO/GO promoted Cd excretion and declined Cd storage in C. elegans by increasing the expression of gene ttm-1 and decreasing the level of gene cdf-2, which were responsible for Cd transportation and Cd accumulation, respectively. Moreover, the efficacy of ZnO/GO in remediating the properties and ecotoxicity of Cd-contaminated soil increased gradually with the time gradient, and could maintain a long-term effect after reaching the optimal remediation efficiency. Our findings established a specific and long-term strategy to simultaneously improve soil properties and reduce ecotoxicity of Cd-contaminated soil, which might provide new insights into the potential application of ZnO/GO in soil remediation for both ecosystem and human health.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes del Suelo / Óxido de Zinc / Cadmio / Restauración y Remediación Ambiental / Nanocompuestos / Grafito Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes del Suelo / Óxido de Zinc / Cadmio / Restauración y Remediación Ambiental / Nanocompuestos / Grafito Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article
...