Your browser doesn't support javascript.
loading
Low-Temperature Thermal Transport Characteristics in Epitaxial Bilayer Graphene Microbridges.
Li, Feiming; Miao, Wei; Yu, Cui; He, Zezhao; Wang, Qingcheng; Zhong, Jiaqiang; Wu, Feng; Wang, Zheng; Zhou, Kangmin; Ren, Yuan; Zhang, Wen; Li, Jing; Shi, Shengcai; Liu, Qingbin; Feng, Zhihong.
Afiliación
  • Li F; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Miao W; University of Science and Technology of China, Hefei 230026, China.
  • Yu C; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • He Z; National Key Laboratory of Solid-State Microwave Devices and Circuits, Shijiazhuang 050051, China.
  • Wang Q; National Key Laboratory of Solid-State Microwave Devices and Circuits, Shijiazhuang 050051, China.
  • Zhong J; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Wu F; University of Science and Technology of China, Hefei 230026, China.
  • Wang Z; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Zhou K; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Ren Y; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Zhang W; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Li J; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Shi S; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Liu Q; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
  • Feng Z; Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China.
ACS Omega ; 9(21): 23053-23059, 2024 May 28.
Article en En | MEDLINE | ID: mdl-38826519
ABSTRACT
In this paper, we present a study of the thermal transport of epitaxial bilayer graphene microbridges. The thermal conductance of three graphene microbridges with different lengths was measured at different temperatures using Johnson noise thermometry. We find that with the decrease of the temperature, the thermal transport in the graphene microbridges switches from electron-phonon coupling to electron diffusion, and the switching temperature is dependent on the length of the microbridge, which is in good agreement with the simulation based on a distributed hot-spot model. Moreover, the electron-phonon thermal conductance has a temperature power law of T3 as predicted for pristine graphene and the electron-phonon coupling coefficient σep is found to be approximately 0.18 W/(m2 K4), corresponding to a deformation potential D of 55 eV. In addition, the electron diffusion in the graphene microbridges adheres to the Wiedemann-Franz law, requiring no corrections to the Lorentz number.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2024 Tipo del documento: Article País de afiliación: China
...