Your browser doesn't support javascript.
loading
Single-cell transcriptomic analysis of the immune microenvironment in pediatric acute leukemia.
Yuan, Jiapei; Zhang, Jingliao; Zhao, Beibei; Liu, Fang; Liu, Tianfeng; Duan, Yongjuan; Chen, Yumei; Chen, Xiaojuan; Zou, Yao; Zhang, Li; Guo, Ye; Yang, Wenyu; Yang, Yang; Wei, Jun; Zhu, Xiaofan; Zhang, Yingchi.
Afiliación
  • Yuan J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China. Electronic addres
  • Zhang J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Zhao B; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Liu F; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Liu T; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Duan Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Chen Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Chen X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Zou Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Zhang L; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Guo Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Yang W; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
  • Yang Y; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin
  • Wei J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China. Electronic addres
  • Zhu X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China. Electronic addres
  • Zhang Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China. Electronic addres
Cancer Lett ; 596: 217018, 2024 Aug 01.
Article en En | MEDLINE | ID: mdl-38844062
ABSTRACT
Relapse and treatment resistance pose significant challenges in the management of pediatric B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). The efficacy of immunotherapy in leukemia remains limited due to factors such as the immunosuppressive tumor microenvironment (TME) and lack of suitable immunotherapeutic targets. Thus, an in-depth characterization of the TME in pediatric leukemia is warranted to improve the efficacy of immunotherapy. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the TME of pediatric B-ALL and AML, focusing specifically on bone-marrow-derived T cells. Moreover, we investigated the transcriptome changes during the initiation, remission, and relapse stages of pediatric AML. Our findings revealed that specific functional expression programs correlated with fluctuations in various T cell subsets, which may be associated with AML progression and relapse. Furthermore, our analysis of cellular communication networks led to the identification of VISTA, CD244, and TIM3 as potential immunotherapeutic targets in pediatric AML. Finally, we detected elevated proportions of γδ T cells and associated functional genes in samples from pediatric patients diagnosed with B-ALL and AML, which could inform the development of novel therapeutic approaches, potentially focusing on γδ T cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leucemia Mieloide Aguda / Análisis de la Célula Individual / Microambiente Tumoral Límite: Adolescent / Child / Child, preschool / Female / Humans / Male Idioma: En Revista: Cancer Lett Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leucemia Mieloide Aguda / Análisis de la Célula Individual / Microambiente Tumoral Límite: Adolescent / Child / Child, preschool / Female / Humans / Male Idioma: En Revista: Cancer Lett Año: 2024 Tipo del documento: Article
...