Your browser doesn't support javascript.
loading
Wearable, Machine Washable, Breathable Polyethylenimine/Sodium Alginate Layer-by-Layer-Coated Cotton-Based Multifunctional Triboelectric Nanogenerators.
Das, Srijan; Chowdhury, Anupam; Ali, Syed Wazed.
Afiliación
  • Das S; Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
  • Chowdhury A; Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
  • Ali SW; Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
ACS Appl Mater Interfaces ; 16(24): 31098-31113, 2024 Jun 19.
Article en En | MEDLINE | ID: mdl-38845418
ABSTRACT
Cotton-based textiles are ubiquitous in daily life and are prime candidates for application in wearable triboelectric nanogenerators. However, pristine cotton is vulnerable to bacterial attack, lacks antioxidant and ultraviolet (UV)-protective abilities, and shows lower triboelectric charge generation against tribonegative materials because it is present in the neutral region of the triboelectric series. To overcome such drawbacks, herein, a facile layer-by-layer method is proposed, involving the deposition of alternate layers of polyethylenimine (PEI) and sodium alginate (SA) on cotton. Such modified fabric remains breathable and flexible, retains its comfort properties, and simultaneously shows multifunctionalities and improved triboelectric output, which are retained even after 50 home laundering cycles. Also, the modified fabric becomes more tribopositive than nylon, silk, and wool. A triboelectric nanogenerator consisting of modified cotton and polyester fabric is proposed that shows a maximum power density of 338 mW/m2. An open-circuit voltage of ∼97.3 V and a short-circuit current of ∼4.59 µA are obtained under 20 N force and 1 Hz tapping frequency. Further, the modified cotton exhibits excellent antibacterial, antioxidant, and UV-protective properties because of the incorporation of PEI, and its moisture management properties are retained due to the presence of sodium alginate in the layer. This study provides a simple yet effective approach to obtaining durable multifunctionalities and improved triboelectric performance in cotton substrates.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India
...