Your browser doesn't support javascript.
loading
Cassia alata's dual role in modulating MUC2 expression in Eimeria papillata-infected jejunum and assessing its anti-inflammatory effects.
Elshershaby, Rabab E; Dkhil, Mohamed A; Dar, Yasser; Abdel-Gaber, Rewaida; Delic, Denis; Helal, Ibrahim B.
Afiliación
  • Elshershaby RE; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
  • Dkhil MA; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
  • Dar Y; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
  • Abdel-Gaber R; Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
  • Delic D; Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
  • Helal IB; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
Microsc Res Tech ; 2024 Jun 07.
Article en En | MEDLINE | ID: mdl-38845567
ABSTRACT
Coccidiosis poses significant hazards to animals, particularly in terms of compromised health, reduced productivity, and economic losses in livestock farming. The conventional treatments for coccidiosis often involve synthetic drugs, contributing to concerns about drug resistance and environmental impact. The pressing need for eco-friendly alternatives is highlighted in this study, emphasizing the importance of exploring medicinal plants like Cassia alata leaf extracts (CAE) against Eimeria papillata-induced infection in mice. The CAE exhibited significant phenolic (2.17 ± 0.03 g/100 g) and flavonoid (0.14 ± 0.01 g/100 g) content and demonstrated notable antioxidant activity. In infected mice, the CAE treatment led to a substantial reduction in oocyst output (~6 fold), ameliorating necrotic enteritis and inflammatory changes in the jejunum. Additionally, CAE treatment increased goblet cell numbers (9.3 ± 0.1 / villus) and decreased macrophage infiltration in the intestinal villi. Molecular analyses revealed CAE's positive modulation of MUC2 gene and notably reduced the levels of pro-inflammatory cytokines (specifically IL-1ß, IL-10, and IFN-γ) when contrasted with the infected cohort. Furthermore, CAE treatment significantly reduced nitric oxide levels (44.03 ± 2.4 µmol/mg), showcasing its anti-inflammatory properties. The findings of this study not only contribute to the understanding of CAE's therapeutic potential but also underscore the importance of seeking eco-friendly alternatives in the face of coccidiosis challenges, addressing both the well-being of animals and the sustainability of agricultural practices. RESEARCH HIGHLIGHTS Cassia alata extract (CAE) exhibited significant phenolic and flavonoid content, displaying notable antioxidant activity. In infected mice, CAE treatment led to a substantial reduction in oocyst output, ameliorating necrotic enteritis and inflammatory changes in the jejunum. CAE treatment increased goblet cell numbers and decreased macrophage infiltration in the intestinal villi, while molecular analyses revealed its positive modulation of the MUC2 gene and notable reduction in pro-inflammatory cytokine levels. Additionally, CAE treatment significantly reduced nitric oxide levels, showcasing its anti-inflammatory properties.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microsc Res Tech Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Egipto

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microsc Res Tech Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Egipto
...