Your browser doesn't support javascript.
loading
Engineering a computable epiblast for in silico modeling of developmental toxicity.
Barham, Kaitlyn; Spencer, Richard; Baker, Nancy C; Knudsen, Thomas B.
Afiliación
  • Barham K; Oak Ridge Associated Universities, USA; USEPA, Center for Compuational Toxicology and Exposure. Electronic address: barham.kaitlyn@epa.gov.
  • Spencer R; General Dynamics Information Technology, USA. Electronic address: spencer.richard@epa.gov.
  • Baker NC; Leidos, USA. Electronic address: baker.nancy@epa.gov.
  • Knudsen TB; USEPA, Center for Compuational Toxicology and Exposure. Electronic address: knudsen.thomas@epa.gov.
Reprod Toxicol ; 128: 108625, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38857815
ABSTRACT
Developmental hazard evaluation is an important part of assessing chemical risks during pregnancy. Toxicological outcomes from prenatal testing in pregnant animals result from complex chemical-biological interactions, and while New Approach Methods (NAMs) based on in vitro bioactivity profiles of human cells offer promising alternatives to animal testing, most of these assays lack cellular positional information, physical constraints, and regional organization of the intact embryo. Here, we engineered a fully computable model of the embryonic disc in the CompuCell3D.org modeling environment to simulate epithelial-mesenchymal transition (EMT) of epiblast cells and self-organization of mesodermal domains (chordamesoderm, paraxial, lateral plate, posterior/extraembryonic). Mesodermal fate is modeled by synthetic activity of the BMP4-NODAL-WNT signaling axis. Cell position in the epiblast determines timing with respect to EMT for 988 computational cells in the computer model. An autonomous homeobox (Hox) clock hidden in the epiblast is driven by WNT-FGF4-CDX signaling. Executing the model renders a quantitative cell-level computation of mesodermal fate and consequences of perturbation based on known biology. For example, synthetic perturbation of the control network rendered altered phenotypes (cybermorphs) mirroring some aspects of experimental mouse embryology, with electronic knockouts, under-activation (hypermorphs) or over-activation (hypermorphs) particularly affecting the size and specification of the posterior mesoderm. This foundational model is trained on embryology but capable of performing a wide variety of toxicological tasks conversing through anatomical simulation to integrate in vitro chemical bioactivity data with known embryology. It is amenable to quantitative simulation for probabilistic prediction of early developmental toxicity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Transición Epitelial-Mesenquimal / Estratos Germinativos Límite: Animals / Female / Humans Idioma: En Revista: Reprod Toxicol Asunto de la revista: EMBRIOLOGIA / MEDICINA REPRODUTIVA / TOXICOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Transición Epitelial-Mesenquimal / Estratos Germinativos Límite: Animals / Female / Humans Idioma: En Revista: Reprod Toxicol Asunto de la revista: EMBRIOLOGIA / MEDICINA REPRODUTIVA / TOXICOLOGIA Año: 2024 Tipo del documento: Article
...