Your browser doesn't support javascript.
loading
Accurate and rapid molecular subgrouping of high-grade glioma via deep learning-assisted label-free fiber-optic Raman spectroscopy.
Liu, Chang; Wang, Jiejun; Shen, Jianghao; Chen, Xun; Ji, Nan; Yue, Shuhua.
Afiliación
  • Liu C; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37, Beijing 100191, Chi
  • Wang J; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, South Fourth Ring West Road 119, Beijing 100050, China.
  • Shen J; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37, Beijing 100191, Chi
  • Chen X; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37, Beijing 100191, Chi
  • Ji N; School of Engineering Medicine, Beihang University, Xueyuan Road 37, Beijing 100191, China.
  • Yue S; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, South Fourth Ring West Road 119, Beijing 100050, China.
PNAS Nexus ; 3(6): pgae208, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38860145
ABSTRACT
Molecular genetics is highly related with prognosis of high-grade glioma. Accordingly, the latest WHO guideline recommends that molecular subgroups of the genes, including IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, CDKN2A/B, need to be detected to better classify glioma and guide surgery and treatment. Unfortunately, there is no preoperative or intraoperative technology available for accurate and comprehensive molecular subgrouping of glioma. Here, we develop a deep learning-assisted fiber-optic Raman diagnostic platform for accurate and rapid molecular subgrouping of high-grade glioma. Specifically, a total of 2,354 fingerprint Raman spectra was obtained from 743 tissue sites (astrocytoma 151; oligodendroglioma 150; glioblastoma (GBM) 442) of 44 high-grade glioma patients. The convolutional neural networks (ResNet) model was then established and optimized for molecular subgrouping. The mean area under receiver operating characteristic curves (AUC) for identifying the molecular subgroups of high-grade glioma reached 0.904, with mean sensitivity of 83.3%, mean specificity of 85.0%, mean accuracy of 83.3%, and mean time expense of 10.6 s. The diagnosis performance using ResNet model was shown to be superior to PCA-SVM and UMAP models, suggesting that high dimensional information from Raman spectra would be helpful. In addition, for the molecular subgroups of GBM, the mean AUC reached 0.932, with mean sensitivity of 87.8%, mean specificity of 83.6%, and mean accuracy of 84.1%. Furthermore, according to saliency maps, the specific Raman features corresponding to tumor-associated biomolecules (e.g. nucleic acid, tyrosine, tryptophan, cholesteryl ester, fatty acid, and collagen) were found to contribute to the accurate molecular subgrouping. Collectively, this study opens up new opportunities for accurate and rapid molecular subgrouping of high-grade glioma, which would assist optimal surgical resection and instant post-operative decision-making.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article
...