Your browser doesn't support javascript.
loading
Serial platelet count as a dynamic prediction marker of hospital mortality among septic patients.
Ye, Qian; Wang, Xuan; Xu, Xiaoshuang; Chen, Jiajin; Christiani, David C; Chen, Feng; Zhang, Ruyang; Wei, Yongyue.
Afiliación
  • Ye Q; Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  • Wang X; Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  • Xu X; Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  • Chen J; Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  • Christiani DC; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA.
  • Chen F; Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
  • Zhang R; Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  • Wei Y; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
Burns Trauma ; 12: tkae016, 2024.
Article en En | MEDLINE | ID: mdl-38882552
ABSTRACT

Background:

Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction.

Methods:

We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points.

Results:

Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic  vs C-indexWeibull 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic  vs C-indexWeibull 0.644 vs 0.617).

Conclusions:

For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Burns Trauma Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Burns Trauma Año: 2024 Tipo del documento: Article País de afiliación: China
...