Your browser doesn't support javascript.
loading
3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models.
Saleem, Hafiza Nosheen; Ignatyeva, Nadezda; Stuut, Christiaan; Jakobs, Stefan; Habeck, Michael; Ebert, Antje.
Afiliación
  • Saleem HN; Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany.
  • Ignatyeva N; DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany.
  • Stuut C; Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany.
  • Jakobs S; DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany.
  • Habeck M; Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
  • Ebert A; Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany.
Cells ; 13(11)2024 May 27.
Article en En | MEDLINE | ID: mdl-38891055
ABSTRACT
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endosomas / Miocitos Cardíacos / Células Madre Pluripotentes Inducidas Límite: Humans Idioma: En Revista: Cells Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endosomas / Miocitos Cardíacos / Células Madre Pluripotentes Inducidas Límite: Humans Idioma: En Revista: Cells Año: 2024 Tipo del documento: Article País de afiliación: Alemania
...