Your browser doesn't support javascript.
loading
Investigation of Appropriate Scaling of Networks and Images for Convolutional Neural Network-Based Nerve Detection in Ultrasound-Guided Nerve Blocks.
Sugino, Takaaki; Onogi, Shinya; Oishi, Rieko; Hanayama, Chie; Inoue, Satoki; Ishida, Shinjiro; Yao, Yuhang; Ogasawara, Nobuhiro; Murakawa, Masahiro; Nakajima, Yoshikazu.
Afiliación
  • Sugino T; Department of Biomedical Informatics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
  • Onogi S; Department of Biomedical Informatics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
  • Oishi R; Department of Anesthesiology, Fukushima Medical University, Fukushima 960-1295, Japan.
  • Hanayama C; Department of Anesthesiology, Fukushima Medical University, Fukushima 960-1295, Japan.
  • Inoue S; Department of Anesthesiology, Fukushima Medical University, Fukushima 960-1295, Japan.
  • Ishida S; TCC Media Lab Co., Ltd., Tokyo 192-0152, Japan.
  • Yao Y; IOT SOFT Co., Ltd., Tokyo 103-0023, Japan.
  • Ogasawara N; TCC Media Lab Co., Ltd., Tokyo 192-0152, Japan.
  • Murakawa M; Department of Anesthesiology, Fukushima Medical University, Fukushima 960-1295, Japan.
  • Nakajima Y; Department of Biomedical Informatics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
Sensors (Basel) ; 24(11)2024 Jun 06.
Article en En | MEDLINE | ID: mdl-38894486
ABSTRACT
Ultrasound imaging is an essential tool in anesthesiology, particularly for ultrasound-guided peripheral nerve blocks (US-PNBs). However, challenges such as speckle noise, acoustic shadows, and variability in nerve appearance complicate the accurate localization of nerve tissues. To address this issue, this study introduces a deep convolutional neural network (DCNN), specifically Scaled-YOLOv4, and investigates an appropriate network model and input image scaling for nerve detection on ultrasound images. Utilizing two datasets, a public dataset and an original dataset, we evaluated the effects of model scale and input image size on detection performance. Our findings reveal that smaller input images and larger model scales significantly improve detection accuracy. The optimal configuration of model size and input image size not only achieved high detection accuracy but also demonstrated real-time processing capabilities.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ultrasonografía / Redes Neurales de la Computación / Bloqueo Nervioso Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ultrasonografía / Redes Neurales de la Computación / Bloqueo Nervioso Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Japón
...