Your browser doesn't support javascript.
loading
WWP2 deletion aggravates acute kidney injury by targeting CDC20/autophagy axis.
You, Ran; Li, Yanwei; Jiang, Yuteng; Hu, Dandan; Gu, Menglei; Zhou, Wei; Zhang, Shengnan; Bai, Mi; Yang, Yunwen; Zhang, Yue; Huang, Songming; Jia, Zhanjun; Zhang, Aihua.
Afiliación
  • You R; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Li Y; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Medicine,
  • Jiang Y; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China.
  • Hu D; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Gu M; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Zhou W; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Zhang S; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Bai M; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Yang Y; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Zhang Y; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Huang S; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.
  • Jia Z; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China. Electronic address:
  • Zhang A; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Medicine,
J Adv Res ; 2024 Jun 22.
Article en En | MEDLINE | ID: mdl-38909885
ABSTRACT

INTRODUCTION:

Acute kidney injury (AKI) is associated with high morbidity and mortality rates. The molecular mechanisms underlying AKI are currently being extensively investigated. WWP2 is an E3 ligase that regulates cell proliferation and differentiation. Whether WWP2 plays a regulatory role in AKI remains to be elucidated.

OBJECTIVES:

We aimed to investigate the implication of WWP2 in AKI and its underlying mechanism in the present study.

METHODS:

We utilized renal tissues from patients with AKI and established AKI models in global or tubule-specific knockout (cKO) mice strains to study WWP2's implication in AKI. We also systemically analyzed ubiquitylation omics and proteomics to decipher the underlying mechanism.

RESULTS:

In the present study, we found that WWP2 expression significantly increased in the tubules of kidneys with AKI. Global or tubule-specific knockout of WWP2 significantly aggravated renal dysfunction and tubular injury in AKI kidneys, whereas WWP2 overexpression significantly protected tubular epithelial cells against cisplatin. WWP2 deficiency profoundly affected autophagy in AKI kidneys. Further analysis with ubiquitylation omics, quantitative proteomics and experimental validation suggested that WWP2 mediated poly-ubiquitylation of CDC20, a negative regulator of autophagy. CDC20 was significantly decreased in AKI kidneys, and selective inhibiting CDC20 with apcin profoundly alleviated renal dysfunction and tubular injury in the cisplatin model with or without WWP2 cKO, indicating that CDC20 may serve as a downstream target of WWP2 in AKI. Inhibiting autophagy with 3-methyladenine blocked apcin's protection against cisplatin-induced renal tubular cell injury. Activating autophagy by rapamycin significantly protected against cisplatin-induced AKI in WWP2 cKO mice, whereas inhibiting autophagy by 3-methyladenine further aggravated apoptosis in cisplatin-exposed WWP2 KO cells.

CONCLUSION:

Taken together, our data indicated that the WWP2/CDC20/autophagy may be an essential intrinsic protective mechanism against AKI. Further activating WWP2 or inhibiting CDC20 may be novel therapeutic strategies for AKI.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Adv Res Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Adv Res Año: 2024 Tipo del documento: Article País de afiliación: China
...