Your browser doesn't support javascript.
loading
Assessment of vegetation net primary productivity variation and influencing factors in the Beijing-Tianjin-Hebei region.
Ma, Zhuoran; Wu, Jianjun; Yang, Huicai; Hong, Zhen; Yang, Jianhua; Gao, Liang.
Afiliación
  • Ma Z; Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin, 300387, China; Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
  • Wu J; Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin, 300387, China; Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical
  • Yang H; Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin, 300387, China; National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
  • Hong Z; Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin, 300387, China.
  • Yang J; Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin, 300387, China.
  • Gao L; Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin, 300387, China.
J Environ Manage ; 365: 121490, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38917537
ABSTRACT
Exploring the spatiotemporal variations of vegetation net primary productivity (NPP) and analyzing the relationships between NPP and its influencing factors are vital for ecological protection in the Beijing-Tianjin-Hebei (BTH) region. In this study, we employed the CASA model in conjunction with spatiotemporal analysis techniques to estimate and analyze the spatiotemporal variations of NPP in BTH and different ecological function sub-regions over the past two decades. Subsequently, we established three scenarios (actual, climate-driven and land cover-driven) to assess the influencing factors and quantify their relative contributions. The results indicated that the overall NPP in BTH exhibited a discernible upward trend from 2000 to 2020, with a growth rate of 3.83 gC·m-2a-1. Furthermore, all six sub-regions exhibited an increase. The Bashang Plateau Ecological Protection Zone (BP) exhibited the highest growth rate (5.03 gC·m-2a-1), while the Low Plains Ecological Restoration Zone (LP) exhibited the lowest (2.07 gC·m-2a-1). Geographically, the stability of NPP exhibited a spatial pattern of gradual increase from west to east. Climate and land cover changes collectively increased NPP by 0.04 TgC·a-1 and 0.07 TgC·a-1, respectively, in the BTH region. Climate factors were found to have the greatest influence on NPP variations, contributing 40.49% across the BTH region. This influence exhibited a decreasing trend from northwest to southeast, with precipitation identified as the most influential climatic factor compared to temperature and solar radiation. Land cover change has profound effects on ecosystems, which is an important factor on NPP. From 2000 to 2020, 15.45% area of the BTH region underwent land cover type change, resulting in a total increase in NPP of 1.33 TgC. The conversion of grass into forest brought about the 0.89 TgC increase in NPP, which is the largest of all change types. In the area where land cover had undergone change, the land cover factor has been found to be the dominant factor influencing variations in NPP, with an average contribution of 49.37%. In contrast, in the south-central area where there has been no change in land cover, the residual factor has been identified as the most influential factor influencing variations in NPP. Our study highlights the important role of land cover change in influencing NPP variations in BTH. It also offers a novel approach to elucidating the influences of diverse factors on NPP, which is crucial for the scientific assessment of vegetation productivity and carbon sequestration capacity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Clima País/Región como asunto: Asia Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Clima País/Región como asunto: Asia Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article País de afiliación: China
...