Your browser doesn't support javascript.
loading
Droplet tilings in precessive fields: hysteresis, elastic defects, and annealing.
Molina, Anton; Prakash, Manu.
Afiliación
  • Molina A; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA.
  • Prakash M; Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA. manup@stanford.edu.
Soft Matter ; 2024 Jun 26.
Article en En | MEDLINE | ID: mdl-38922641
ABSTRACT
Two-component Marangoni contracted droplets can be arranged into arbitrary two-dimensional tiling patterns where they display rich dynamics due to vapor-mediated long-range interactions. Recent work has characterized the centered hexagonal honeycomb lattice, showing it to be a highly frustrated system with many metastable states and relaxation occurring over multiple timescales [Molina et al., Proc. Natl. Acad. Sci. U. S. A., 2021, 118, e2020014118]. Here, we study this system under the influence of a rotating gravitational field. High amplitudes are able to completely disrupt droplet-droplet interactions, making it possible to identify a transition between field-dominated and interaction-dominated regimes. The system displays complex hysteresis behavior, the details of which are connected to the emergence of linear mesoscale structures. These mesoscale features display an elasticity that is governed by the balance between gravity and long-range vapor-mediated attractions. We find that disorder plays an important role in determining the dynamics of these features. Finally, we demonstrate annealing the system by progressively reducing the field amplitude, a process that reduces configurational energy compared to a rapid quench. The ability to manipulate vapor-mediated interactions in deliberately designed droplet tilings provides a novel platform for table-top explorations of multi-body interactions.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Soft Matter Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Soft Matter Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...