Your browser doesn't support javascript.
loading
Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling.
Bhattacharyya, Sohini; Roy, Soumyabrata; Vajtai, Robert.
Afiliación
  • Bhattacharyya S; Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
  • Roy S; Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
  • Vajtai R; Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Small ; : e2400557, 2024 Jun 23.
Article en En | MEDLINE | ID: mdl-38922789
ABSTRACT
The colossal growth in the use of Li-ion batteries (LiBs) has raised serious concerns over the supply chain of strategic minerals, e.g., Co, Ni, and Li, that make up the cathode active materials (CAM). Recycling spent LiBs is an important step toward sustainability that can establish a circular economy by effectively tackling large amounts of e-waste while ensuring an unhindered supply of critical minerals. Among the various methods of LiB recycling available, pyro- and hydrometallurgy have been utilized in the industry owing to their ease of operation and high efficiency, although they are associated with significant environmental concerns. Direct recycling, a more recent concept that aims to relithiate spent LiBs without disrupting the lattice structure of the CAMs, has been realized only in the laboratory scale so far and further optimization is required before it can be extended to the bulk scale. Additionally, significant progress has been made in the areas of hydrometallurgy in terms of using ecofriendly green lixiviants and alternate sources of energy, e.g., microwave and electrochemical, that makes the recycling processes more efficient and sustainable. In this review, the latest developments in LiB recycling are discussed that have focused on environmental and economic viability, as well as process intensification. These include deep eutectic solvent based recycling, electrochemical and microwave-assisted recycling, and various types of direct recycling.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...