Your browser doesn't support javascript.
loading
Aerosol in global oceanic regions: Four-decade trends, spatial patterns, and policy implications.
Li, Linxuan; Wang, Xuehan; Bi, Xiaohui; Dai, Qili; Liu, Baoshuang; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang.
Afiliación
  • Li L; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Wang X; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Bi X; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Dai Q; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Liu B; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Wu J; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Zhang Y; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
  • Feng Y; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory f
Sci Total Environ ; 947: 174176, 2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38925390
ABSTRACT
High aerosol loadings are observed not only in megacities on continents but also in oceanic regions like the Bohai Sea. This work provides a comprehensive analysis of the spatial and temporal variations in Aerosol Optical Depth (AOD) across different ocean regions worldwide over the past four decades, using remote sensing reanalysis data. The mean AOD value across all oceanic grids is approximately 0.112, with higher levels recorded in the Central Atlantic (~0.206), followed by the North Indian Ocean (~0.201), and the Western North Pacific (~0.197). A latitudinal analysis reveals that high AOD values are predominantly found in the Northern Hemisphere's oceanic regions, especially between latitudes 0° and 70° N. Except for the Gulf of California and Hudson Bay, AOD values in the other fourteen surveyed inland seas surpass the mean levels found at similar latitudes in oceanic regions. Among which, the Bohai Sea stands out as the most polluted oceanic region with AOD value of 0.35. Over the last four decades, AOD trends have revealed a significant decrease across about 89.5 % of global oceanic grids, while an increase in AOD is observed in low-latitude oceanic areas (30° S-30° N). Investigation into inland seas shows that nearly two-thirds have experienced a declining AOD trend, while sharply upward trends in AOD are primarily found in Asia. The Bohai Sea shows the largest increase in AOD, with an annual growth rate of 1.4 %. The turning-points of the AOD in each inland sea confirm the success of regional emission control policies initiated on the adjacent continents. To improve air quality in inland seas like the Bohai Sea, adjusting industrial layouts, such as relocating heavy industries from the surrounding coastal cities' proximities to areas near open seas, could significantly benefit public health.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article
...