Your browser doesn't support javascript.
loading
Transcriptome Analysis of the Regulatory Mechanisms of Holly (Ilex dabieshanensis) under Salt Stress Conditions.
Chen, Hong; Li, Huihui; Chong, Xinran; Zhou, Ting; Lu, Xiaoqing; Wang, Xiaolong; Zheng, Bingsong.
Afiliación
  • Chen H; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
  • Li H; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A & F University, Hangzhou 311300, China.
  • Chong X; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China.
  • Zhou T; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
  • Lu X; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
  • Wang X; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
  • Zheng B; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
Plants (Basel) ; 13(12)2024 Jun 13.
Article en En | MEDLINE | ID: mdl-38931069
ABSTRACT
The holly Ilex dabieshanensis K. Yao & M. B. Deng, a tree endemic to the Dabieshan Mountains region in China, is a commonly used landscaping plant. Like other crops, its growth is affected by salt stress. The molecular mechanism underlying salt tolerance in holly is still unclear. In this study, we used NaCl treatment and RNA sequencing (RNA-seq) at different times to identify the salt stress response genes of holly. A total of 4775 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs obtained at different salt treatment times (3, 6, 9, 12, and 24 h), as compared to control (ck, 0 h), showed that plant hormone signal transduction and carotenoid biosynthesis were highly enriched. The mechanism by which holly responds to salt stress involves many plant hormones, among which the accumulation of abscisic acid (ABA) and its signal transduction may play an important role. In addition, ion homeostasis, osmotic metabolism, accumulation of antioxidant enzymes and nonenzymatic antioxidant compounds, and transcription factors jointly regulate the physiological balance in holly, providing important guarantees for its growth and development under conditions of salt stress. These results lay the foundation for studying the molecular mechanisms of salt tolerance in holly and for the selection of salt-tolerant varieties.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Plants (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Plants (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China
...