The involvement of IRP2-induced ferroptosis through the p53-SLC7A11-ALOX12 pathway in Parkinson's disease.
Free Radic Biol Med
; 222: 386-396, 2024 Sep.
Article
en En
| MEDLINE
| ID: mdl-38936518
ABSTRACT
Disturbance in iron homeostasis has been described in Parkinson's disease (PD), in which iron regulatory protein 2 (IRP2) plays a crucial role. IRP2 deletion resulted in the misregulation of iron metabolism and subsequent neurodegeneration. However, growing evidence showed that the levels of IRP2 were increased in the substantia nigra (SN) in MPTP-induced PD mice. To further clarify the role of increased IRP2 in PD, we developed IRP2-overexpressed mice by microinjecting AAV-Ireb2 in the SN. These mice showed decreased motor ability, abnormal gait and anxiety. Iron deposits induced by increased TFR1 and dopaminergic neuronal loss were observed in the SN. When these mice were treated with MPTP, exacerbated dyskinesia and dopaminergic neuronal loss were observed. In addition, TP53 was post-transcriptionally upregulated by IRP2 binding to the iron regulated element (IRE) in its 3' untranslated region. This resulted in increased lipid peroxidation levels and induced ferroptosis through the SLC7A11-ALOX12 pathway, which was independent of GPX4. This study revealed that IRP2 homeostasis in the SN was critical for PD progression and clarified the molecular mechanism of ferroptosis caused by IRP2.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
/
Sustancia Negra
/
Proteína p53 Supresora de Tumor
/
Proteína 2 Reguladora de Hierro
/
Ferroptosis
Límite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
Free Radic Biol Med
Asunto de la revista:
BIOQUIMICA
/
MEDICINA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China