Your browser doesn't support javascript.
loading
Bio-accessibility and bio-availability evaluation of each arsenic species existing in various edible seaweeds in vitro and in vivo for arsenic risk assessment.
Lin, Yue; Liu, Junfeng; Sun, Ying; Chen, Shilong; Chen, Jianlang; Fu, FengFu.
Afiliación
  • Lin Y; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Liu J; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Sun Y; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Chen S; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Chen J; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
  • Fu F; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. Electronic address: fengfu@fzu.edu.cn.
Sci Total Environ ; 946: 174247, 2024 Oct 10.
Article en En | MEDLINE | ID: mdl-38936725
ABSTRACT
Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (⁓31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (⁓10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an ⁓0.0 % of in vivo bioavailability and only a ⁓3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arsénico / Arsenicales / Algas Marinas Límite: Animals / Humans País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ / Sci. total environ / Science of the total environment Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arsénico / Arsenicales / Algas Marinas Límite: Animals / Humans País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ / Sci. total environ / Science of the total environment Año: 2024 Tipo del documento: Article País de afiliación: China
...