Your browser doesn't support javascript.
loading
Deep learning-based segmentation of left ventricular myocardium on dynamic contrast-enhanced MRI: a comprehensive evaluation across temporal frames.
Jafari, Raufiya; Verma, Radhakrishan; Aggarwal, Vinayak; Gupta, Rakesh Kumar; Singh, Anup.
Afiliación
  • Jafari R; Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India.
  • Verma R; Department of Radiology, Fortis Memorial Research Institute, Gurugram, India.
  • Aggarwal V; Department of Cardiology, Fortis Memorial Research Institute, Gurugram, India.
  • Gupta RK; Department of Radiology, Fortis Memorial Research Institute, Gurugram, India.
  • Singh A; Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India. anupsm@iitd.ac.in.
Int J Comput Assist Radiol Surg ; 19(10): 2055-2062, 2024 Oct.
Article en En | MEDLINE | ID: mdl-38965165
ABSTRACT

PURPOSE:

Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital.

METHODS:

The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5 T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell's demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI.

RESULTS:

The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06.

CONCLUSION:

The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Medios de Contraste / Aprendizaje Profundo / Ventrículos Cardíacos Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Medios de Contraste / Aprendizaje Profundo / Ventrículos Cardíacos Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: India
...