Your browser doesn't support javascript.
loading
Deep learning-based dimensional emotion recognition for conversational agent-based cognitive behavioral therapy.
Striegl, Julian; Richter, Jordan Wenzel; Grossmann, Leoni; Bråstad, Björn; Gotthardt, Marie; Rück, Christian; Wallert, John; Loitsch, Claudia.
Afiliación
  • Striegl J; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig), Technische Universität Dresden, Dresden, Saxony, Germany.
  • Richter JW; Chair of Human-Computer Interaction, Technische Universität Dresden, Dresden, Saxony, Germany.
  • Grossmann L; Centre for Psychiatry Research, Department of Clinical Neuroscience, Huddinge & Stockholm Health Care Services, Region Stockholm, Karolinska Institute, Stockholm, Sweden.
  • Bråstad B; Centre for Psychiatry Research, Department of Clinical Neuroscience, Huddinge & Stockholm Health Care Services, Region Stockholm, Karolinska Institute, Stockholm, Sweden.
  • Gotthardt M; Kungliga Tekniska Högskolan, Stockholm, Sweden.
  • Rück C; Centre for Psychiatry Research, Department of Clinical Neuroscience, Huddinge & Stockholm Health Care Services, Region Stockholm, Karolinska Institute, Stockholm, Sweden.
  • Wallert J; Centre for Psychiatry Research, Department of Clinical Neuroscience, Huddinge & Stockholm Health Care Services, Region Stockholm, Karolinska Institute, Stockholm, Sweden.
  • Loitsch C; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig), Technische Universität Dresden, Dresden, Saxony, Germany.
PeerJ Comput Sci ; 10: e2104, 2024.
Article en En | MEDLINE | ID: mdl-38983201
ABSTRACT
Internet-based cognitive behavioral therapy (iCBT) offers a scalable, cost-effective, accessible, and low-threshold form of psychotherapy. Recent advancements explored the use of conversational agents such as chatbots and voice assistants to enhance the delivery of iCBT. These agents can deliver iCBT-based exercises, recognize and track emotional states, assess therapy progress, convey empathy, and potentially predict long-term therapy outcome. However, existing systems predominantly utilize categorical approaches for emotional modeling, which can oversimplify the complexity of human emotional states. To address this, we developed a transformer-based model for dimensional text-based emotion recognition, fine-tuned with a novel, comprehensive dimensional emotion dataset comprising 75,503 samples. This model significantly outperforms existing state-of-the-art models in detecting the dimensions of valence, arousal, and dominance, achieving a Pearson correlation coefficient of r = 0.90, r = 0.77, and r = 0.64, respectively. Furthermore, a feasibility study involving 20 participants confirmed the model's technical effectiveness and its usability, acceptance, and empathic understanding in a conversational agent-based iCBT setting, marking a substantial improvement in personalized and effective therapy experiences.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PeerJ Comput Sci Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PeerJ Comput Sci Año: 2024 Tipo del documento: Article País de afiliación: Alemania
...