Your browser doesn't support javascript.
loading
Harnessing 3D Printing and Electrospinning for Multiscale Hybrid Patches Mimicking the Native Myocardium.
Lou, Lihua; Rubfiaro, Alberto Sesena; Deng, Victor; He, Jin; Thomas, Tony; Roy, Mukesh; Dickerson, Darryl; Agarwal, Arvind.
Afiliación
  • Lou L; Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States.
  • Rubfiaro AS; Department of Physics, Florida International University, Miami, Florida 33199, United States.
  • Deng V; Department of Physics, Florida International University, Miami, Florida 33199, United States.
  • He J; Department of Physics, Florida International University, Miami, Florida 33199, United States.
  • Thomas T; Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States.
  • Roy M; Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States.
  • Dickerson D; Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States.
  • Agarwal A; Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States.
ACS Appl Mater Interfaces ; 16(29): 37596-37612, 2024 Jul 24.
Article en En | MEDLINE | ID: mdl-38991102
ABSTRACT
Engineered cardiac tissues show potential for regenerative therapy in ischemic heart disease. Yet, selection of soft biomaterials for scaffold manufacturing is primarily influenced by empirical and compositional factors, raising concerns about arrhythmic risks due to poor electrophysiological integration. Addressing this, we developed multiscale hybrid myocardial patches mimicking native myocardium's structural and biomechanical attributes, utilizing 3D printing and electrospinning techniques. We compared three patch types pure silicone and silicone-poly(lactic-co-glycolic acid) (PLGA) with random (S-PLGA-R) and aligned (S-PLGA-A) fibers. S-PLGA-A patches with fiber orientation angles of 95-115° are achieved by applying a secondary electrical field using two parallel aluminum enhancers. With bulk and localized moduli of 350-750 and 13-20 kPa resembling the native myocardium, S-PLGA-A patches demonstrate a sarcomere length of 2.1 ± 0.2 µm, ≥50% higher strain motions and diastolic phase, and a 50-70% slower rise of calcium handling compared to the other two patches. This enhanced maturation and improved synchronization phenomena are attributed to efficient force transmission and reduced stress concentration due to mechanical similarity and linear propagation of electrical signals. This study presents a promising strategy for advancing regenerative cardiac therapies by harnessing the capabilities of 3D printing and electrospinning, providing a proof-of-concept for their effectiveness.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Impresión Tridimensional / Copolímero de Ácido Poliláctico-Ácido Poliglicólico / Miocardio Límite: Animals / Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Impresión Tridimensional / Copolímero de Ácido Poliláctico-Ácido Poliglicólico / Miocardio Límite: Animals / Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...