Your browser doesn't support javascript.
loading
Flow to Candidate: Temporal Knowledge Graph Reasoning With Candidate-Oriented Relational Graph.
Article en En | MEDLINE | ID: mdl-38995707
ABSTRACT
Reasoning over temporal knowledge graphs (TKGs) is a challenging task that requires models to infer future events based on past facts. Currently, subgraph-based methods have become the state-of-the-art (SOTA) techniques for this task due to their superior capability to explore local information in knowledge graphs (KGs). However, while previous methods have been effective in capturing semantic patterns in TKG, they are hard to capture more complex topological patterns. In contrast, path-based methods can efficiently capture relation paths between nodes and obtain relation patterns based on the order of relation connections. But subgraphs can retain much more information than a single path. Motivated by this observation, we propose a new subgraph-based approach to capture complex relational patterns. The method constructs candidate-oriented relational graphs to capture the local structure of TKGs and introduces a variant of a graph neural network model to learn the graph structure information between query-candidate pairs. In particular, we first design a prior directed temporal edge sampling method, which is starting from the query node and generating multiple candidate-oriented relational graphs simultaneously. Next, we propose a recursive propagation architecture that can encode all relational graphs in the local structures in parallel. Additionally, we introduce a self-attention mechanism in the propagation architecture to capture the query's preference. Finally, we design a simple scoring function to calculate the candidate nodes' scores and generate the model's predictions. To validate our approach, we conduct extensive experiments on four benchmark datasets (ICEWS14, ICEWS18, ICEWS0515, and YAGO). Experiments on four benchmark datasets demonstrate that our proposed approach possesses stronger inference and faster convergence than the SOTA methods. In addition, our method provides a relational graph for each query-candidate pair, which offers interpretable evidence for TKG prediction results.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Año: 2024 Tipo del documento: Article
...