Your browser doesn't support javascript.
loading
Microstructure and Erosion Wear of In Situ TiC-Reinforced Co-Cr-W-C (Stellite 6) Laser-Cladded Coatings.
Górka, Jacek; Poloczek, Tomasz; Janicki, Damian; Lont, Aleksandra; Topór, Slawomir; Zuk, Marcin; Rzeznikiewicz, Agnieszka.
Afiliación
  • Górka J; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
  • Poloczek T; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
  • Janicki D; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
  • Lont A; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
  • Topór S; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
  • Zuk M; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
  • Rzeznikiewicz A; Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland.
Materials (Basel) ; 17(13)2024 Jun 25.
Article en En | MEDLINE | ID: mdl-38998180
ABSTRACT
The article presents research results on the possibility of shaping the structure and properties of Co-Cr-W-C-Ti alloys (type Stellite 6) using laser cladding technology. Cobalt-based alloys are used in several industries because they are characterized by high erosion, abrasion, and corrosion resistance, retaining these properties at high temperatures. To further increase erosion resistance, it seems appropriate to reinforce material by in situ synthesis of hard phases. Among the transition metal carbides (TMCs), titanium carbide is one of the hardest and can have a positive effect on the extension of the lifetime of components made from cobalt-based alloys. In this article, concentration of C, W, and Ti due to the possibility of in situ synthesis of titanium carbides was subjected to detailed analysis. The provided research includes macrostructure and microstructure analysis, X-ray diffraction (XRD), microhardness, and penetrant tests. It was found that the optimal concentrations of Ti and C in the Co-Cr-W-C alloy allow the formation of titanium carbides, which significantly improves erosion resistance for low impact angles. Depending on the concentrations of titanium, carbon, and tungsten in the molten metal pool, it is possible to shape the alloy structure by influencing to morphology and size of the reinforcing phase in the form of the complex carbide (Ti,W)C.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Polonia
...