Your browser doesn't support javascript.
loading
Isolation and characterization of a novel Bacillus cereus bacteriophage vBce-DP7.
Wang, Kunyu; Yuan, Xiaoming; Wang, Juan; Huang, Zhichao; Yu, Shan; Jin, Hui; Wu, Shi; Xue, Liang; Wu, Qingping; Ding, Yu.
Afiliación
  • Wang K; Department of Food Science & Engineering, Institute of International School, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and H
  • Yuan X; Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety
  • Wang J; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences,
  • Huang Z; Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety
  • Yu S; Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety
  • Jin H; Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety
  • Wu S; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences,
  • Xue L; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences,
  • Wu Q; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences,
  • Ding Y; Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China. Electronic address: dingyu@jnu.edu.cn.
Microb Pathog ; 194: 106792, 2024 Jul 14.
Article en En | MEDLINE | ID: mdl-39004153
ABSTRACT
Foodborne pathogens have become a major concern for public health. Bacillus cereus, a representative foodborne pathogen, is particularly challenging due to its ability to cause food poisoning and its resilient spores that are difficult to completely eradicate. Therefore, it is crucial to develop measures to prevent and control B. cereus. Bacteriophages, which are high specific towards their host strains and cannot infect eukaryotes, have proven to be effective in combating foodborne pathogens and are safe for human use. In this study, we isolated and characterized a novel bacteriophage named vBce-DP7 that specifically targets B. cereus strains belonging to three different sequence types (STs). Phage vBce-DP7 is a lytic one and has a short latent time of only 15 min. Moreover, it exhibites a good temperature tolerance, retaining high activity across a broad range of 4-55 ℃. Additionally, its activity remains unaffected within a wide pH range spanning from 2 to 10. Interestingly, with only 4 % genetic similarity with known bacteriophages, vBce-DP7 shows a possible classification on a family level though it shares many similar functional proteins with Salasmaviridae bacteriophages. Taken together, vBce-DP7 demonstrates its significant potential for further exploration in terms of phage diversity and its application in controlling B. cereus.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microb Pathog Asunto de la revista: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microb Pathog Asunto de la revista: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Año: 2024 Tipo del documento: Article
...