Your browser doesn't support javascript.
loading
Unfolding rates of 1:1 and 2:1 complex of CX-5461 and c-MYC promoter G-quadruplexes revealed by single-molecule force spectroscopy.
Peng, Hui; Zhang, Yashuo; Luo, Qun; Wang, Xinyu; You, Huijuan.
Afiliación
  • Peng H; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
  • Zhang Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
  • Luo Q; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
  • Wang X; College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.
  • You H; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Biophys Rep ; 10(3): 180-189, 2024 Jun 30.
Article en En | MEDLINE | ID: mdl-39027314
ABSTRACT
CX-5461, also known as pidnarulex, is a strong G4 stabilizer and has received FDA fast-track designation for BRCA1- and BRCA2- mutated cancers. However, quantitative measurements of the unfolding rates of CX-5461-G4 complexes which are important for the regulation function of G4s, remain lacking. Here, we employ single-molecule magnetic tweezers to measure the unfolding force distributions of c-MYC G4s in the presence of different concentrations of CX-5461. The unfolding force distributions exhibit three discrete levels of unfolding force peaks, corresponding to three binding modes. In combination with a fluorescent quenching assay and molecular docking to previously reported ligand-c-MYC G4 structure, we assigned the ~69 pN peak corresponding to the 11 (ligandG4) complex where CX-5461 binds at the G4's 5'-end. The ~84 pN peak is attributed to the 21 complex where CX-5461 occupies both the 5' and 3'. Furthermore, using the Bell-Arrhenius model to fit the unfolding force distributions, we determined the zero-force unfolding rates of 11, and 21 complexes to be (2.4 ± 0.9) × 10-8 s-1 and (1.4 ± 1.0) × 10-9 s-1 respectively. These findings provide valuable insights for the development of G4-targeted ligands to combat c-MYC-driven cancers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biophys Rep Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biophys Rep Año: 2024 Tipo del documento: Article País de afiliación: China
...