Your browser doesn't support javascript.
loading
Halogen atom regulation of acceptor-donor-acceptor type conjugated molecules for photothermal antibacterial and antibiofilm therapy.
Zhao, Yue; Cui, Yuanyuan; Xie, Shijie; Qi, Ruilian; Xu, Li; Yuan, Huanxiang.
Afiliación
  • Zhao Y; Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China. yhx@iccas.ac.cn.
  • Cui Y; Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China. yhx@iccas.ac.cn.
  • Xie S; Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
  • Qi R; Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China. yhx@iccas.ac.cn.
  • Xu L; Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
  • Yuan H; Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China. yhx@iccas.ac.cn.
Biomater Sci ; 12(17): 4386-4392, 2024 Aug 20.
Article en En | MEDLINE | ID: mdl-39028268
ABSTRACT
Drug-resistant bacteria and biofilm have caused serious public health problems. It is necessary to develop a treatment that is highly effective against drug-resistant bacteria without inducing drug resistance. Herein, we prepare a series of nanoparticles based on three conjugated molecules (BTP-BrCl, BTP-ClBr, and BTP-ClmBr) with acceptor-donor-acceptor (A-D-A) structure. By adjusting the position of the halogen atoms, the photothermal properties can be effectively regulated. In particular, these three nanoparticles (BTP-BrCl, BTP-ClBr, and BTP-ClmBr NPs) exhibited photothermal conversion efficiencies (PCE) up to 57.4%, 60.3%, and 75.9%, respectively. Among these nanoparticles, BTP-ClmBr NPs with the chlorine atom close to the carbonyl and the bromine atom away from the carbonyl in the acceptor have the highest PCE. Due to their excellent photothermal properties, all the NPs achieved more than 99.9% antibacterial activity against AmprE. coli, S. aureus and MRSA. When S. aureus was treated with these three nanoparticles under light irradiation, little biofilm formation was observed. Moreover, they could kill more than 99.9% of the bacteria in the biofilm. In summary, this study provides a strategy for the preparation of high-performance nano-photothermal agents and their application in the field of anti-drug resistant bacteria and biofilm prevention and cure.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Staphylococcus aureus / Biopelículas / Nanopartículas / Halógenos / Antibacterianos Límite: Humans Idioma: En Revista: Biomater Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Staphylococcus aureus / Biopelículas / Nanopartículas / Halógenos / Antibacterianos Límite: Humans Idioma: En Revista: Biomater Sci Año: 2024 Tipo del documento: Article País de afiliación: China
...