Your browser doesn't support javascript.
loading
A Biocompatible Hydrogen-Bonded Organic Framework (HOF) as Sonosensitizer and Artificial Enzyme for In-Depth Treatment of Alzheimer's Disease.
Ya, Junlin; Zhang, Haochen; Qin, Geng; Huang, Congcong; Zhao, Chuanqi; Ren, Jinsong; Qu, Xiaogang.
Afiliación
  • Ya J; Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
  • Zhang H; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Qin G; Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
  • Huang C; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Zhao C; Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
  • Ren J; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Qu X; Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
Adv Healthc Mater ; : e2402342, 2024 Jul 19.
Article en En | MEDLINE | ID: mdl-39031538
ABSTRACT
Current phototherapeutic approaches for Alzheimer's disease (AD) exhibit restricted clinical outcomes due to the limited physical penetration and comprised brain microenvironment of noninvasive nanomedicine. Herein, a hydrogen-bonded organic framework (HOF) based sonosensitizer is designed and synthesized. Mn-TCPP, a planar molecule where Mn2+ ion is chelated in the core with a large p-conjugated system and 4 carboxylate acid groups, has been successfully used as building blocks to construct an ultrasound-sensitive HOF (USI-MHOF), which can go deep in the brain of AD animal models. The both in vitro and in vivo studies indicate that USI-MHOF can generate singlet oxygen (1O2) and oxidize ß-amyloid (Aß) to inhibit aggregation, consequently attenuating Aß neurotoxicity. More intriguingly, USI-MHOF exhibits catalase (CAT)- and superoxide dismutase (SOD)-like activities, mitigating neuron oxidative stress and reprograming the brain microenvironment. For better crossing the blood-brain barrier (BBB), the peptide KLVFFAED (KD8) has been covalently grafted to USI-MHOF for improving BBB permeability and Aß selectivity. Further, in vivo experiments demonstrate a significant reduction of the craniocerebral Aß plaques and improvement of the cognition deficits in triple-transgenic AD (3×Tg-AD) mice models following deep-penetration ultrasound treatment. The work provides the first example of an ultrasound-responsive biocompatible HOF as non-invasive nanomedicine for in-depth treatment of AD.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Healthc Mater Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Healthc Mater Año: 2024 Tipo del documento: Article
...