Your browser doesn't support javascript.
loading
Simultaneous high throughput genotyping of 36 blood group systems using NGS based on probe capture technology.
Zhang, Jingjing; Yuan, Wenjing; Hong, Xiaozhen; Ying, Yanling; Zhu, Faming.
Afiliación
  • Zhang J; Blood Center of Zhejiang Province, Hangzhou, China.
  • Yuan W; Blood Center of Zhejiang Province, Hangzhou, China.
  • Hong X; Blood Center of Zhejiang Province, Hangzhou, China.
  • Ying Y; Blood Center of Zhejiang Province, Hangzhou, China.
  • Zhu F; Blood Center of Zhejiang Province, Hangzhou, China.
Heliyon ; 10(13): e33608, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-39040346
ABSTRACT
Human blood group antigen has important biological functions, and transfusion of incompatible blood can cause alloimmunization and may lead to serious hemolytic reactions. Currently, serological methods are most commonly used in blood group typing. However, this technique has certain limitations and cannot fully meet the increasing demand for the identification of blood group antigens. This study describes a next-generation sequencing (NGS) technology platform based on exon and flanking region capture probes to detect full coding exon and flanking intron regions of the 36 blood group systems, providing a new high-throughput method for the identification of blood group antigens. The 871 capture probes were designed for the exon and flanking intron sequences of 36 blood group system genes, and synchronization analysis for 36 blood groups was developed. The library for NGS was tested using the MiSeq Sequencing Reagent Kit (v2, 300 cycles) by Illumina NovaSeq, and the data were analyzed by the CLC Genomics Workbench 21.0 software. A total of 199 blood specimens have been sequenced for the 41 genes from 36 blood groups. Among them, heterozygote genotypes were found in the ABO, Rh, MNS, Lewis, Duffy, Kidd, Diego, Gerbich, Dombrock, Globoside, JR, LAN, and Landsteiner-Wiene blood group systems. Only the homozygous genotype was found in the remaining 22 blood group systems. The obtained data in the NGS method shows a good correlation (99.98 %) with those of the polymerase chain reaction-sequence-based typing. An NGS technology platform for 36 blood group systems genotyping was successfully established, which has the characteristics of high accuracy, high throughput, and wide coverage.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: China
...