Your browser doesn't support javascript.
loading
Surface modification of PVDF ultrafiltration membranes using spacer arms and synthetic receptors for virus capturing and separation.
Olivares Moreno, Carmen Andreina; Ghaddar, Nabila; Sehit, Ekin; Schomäcker, Reinhard; Altintas, Zeynep.
Afiliación
  • Olivares Moreno CA; Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany.
  • Ghaddar N; Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany.
  • Sehit E; Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany.
  • Schomäcker R; Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany.
  • Altintas Z; Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118, Kiel, Germany. Electronic
Talanta ; 279: 126558, 2024 Nov 01.
Article en En | MEDLINE | ID: mdl-39047630
ABSTRACT
Although membrane technology has demonstrated outstanding pathogen removal capabilities, current commercial membranes are insufficient for removing small viruses at trace levels due to certain limitations. The theoretical and practical significance of developing a new form of hydrophilic, anti-fouling, and virus-specific ultra-purification membrane with high capturing and separation efficiency, stability, and throughput for water treatment is of the utmost importance. In this study, molecularly imprinted membranes (MIMs) were fabricated from polyvinylidene fluoride (PVDF) membranes utilizing novel surface hydrophilic modification techniques, followed by the immobilization of virus-specific molecularly imprinted nanoparticles (nanoMIPs) as synthetic receptors. Three distinct membrane functionalization strategies were established and optimized for the first time membrane functionalization with (i) polyethyleneimine (PEI) and dopamine (DOP), (ii) PEI and 3-(chloropropyl)-trimethoxysilane (CTS), and (iii) chitosan (CS). Hydrophilicity was enhanced significantly as a result of these modification strategies. Additionally, the modifications enabled spacer arms between the membrane surface and the nanoMIPs to decrease steric hindrance. The surface chemistry, morphology, and membrane performance results from the characterization analysis of the MIMs demonstrated excellent hydrophilicity (e.g., the functionalized membrane presented 37.84° while the unmodified bare membrane exhibited 128.94° of water contact angle), higher permeation flux (145.96 L m-2 h-1 for the functionalized membrane), excellent uptake capacity (up to 99.99 % for PEI-DOP-MIM and CS-MIM), and recovery (more than 80 % for PEI-DOP-MIM). As proof of concept, the cutting-edge MIMs were able to eliminate the model adenoviruses up to 99.99 % from water. The findings indicate that the novel functionalized PVDF membranes hold promise for implementation in practical applications for virus capture and separation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polivinilos / Propiedades de Superficie / Ultrafiltración / Membranas Artificiales Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polivinilos / Propiedades de Superficie / Ultrafiltración / Membranas Artificiales Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article País de afiliación: Alemania
...