Your browser doesn't support javascript.
loading
Comparing Artificial Intelligence-Based Versus Conventional Endotracheal Tube Monitoring Systems in Clinical Practice.
Lin, Zu-Chun; Koo, Malcolm; Chang, Wan-Jung; Chen, Hsiao-Chuen; Liao, Bo-Hao; Tuan, Lu-Yen; Liu, Chun-Wei.
Afiliación
  • Lin ZC; Department of Nursing, College of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.
  • Koo M; Department of Nursing, College of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.
  • Chang WJ; Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
  • Chen HC; Department of Nursing, College of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.
  • Liao BH; Nursing Department, Mennonite Christian Hospital, Hualien, Taiwan.
  • Tuan LY; Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
  • Liu CW; VIS@betterworld lab Experimental Education Institution, Taipei, Taiwan.
Stud Health Technol Inform ; 315: 589-591, 2024 Jul 24.
Article en En | MEDLINE | ID: mdl-39049336
ABSTRACT
Endotracheal tube dislodgement is a common patient safety incident in clinical settings. Current clinical practices, primarily relying on bedside visual inspections and equipment checks, often fail to detect endotracheal tube displacement or dislodgement promptly. This study involved the development of a deep learning, artificial intelligence (AI)-based system for monitoring tube displacement. We also propose a randomized crossover experiment to evaluate the effectiveness of this AI-based monitoring system compared to conventional methods. The assessment will focus on immediacy in detecting and handling of tube anomalies, the completeness and accuracy of shift transitions, and the degree of innovation diffusion. The findings from this research are expected to offer valuable insights into the development and integration of AI in enhancing care provision and facilitating innovation diffusion in medical and nursing research.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Intubación Intratraqueal Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Intubación Intratraqueal Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Taiwán
...