Your browser doesn't support javascript.
loading
Tanapox Virus and Yaba Monkey Tumor Virus K3 Orthologs Inhibit Primate Protein Kinase R in a Species-Specific Fashion.
Megawati, Dewi; Stroup, Jeannine N; Park, Chorong; Clarkson, Taylor; Tazi, Loubna; Brennan, Greg; Rothenburg, Stefan.
Afiliación
  • Megawati D; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
  • Stroup JN; Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar 80239, Bali, Indonesia.
  • Park C; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
  • Clarkson T; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
  • Tazi L; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
  • Brennan G; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
  • Rothenburg S; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.
Viruses ; 16(7)2024 Jul 08.
Article en En | MEDLINE | ID: mdl-39066257
ABSTRACT
Yaba monkey tumor virus (YMTV) and Tanapox virus (TPV) are members of the Yatapoxvirus genus and can infect humans and other primates. Despite the threat posed by yatapoxviruses, the factors determining their host range are poorly understood. In this study, we analyzed the ability of YMTV and TPV orthologs of vaccinia virus K3 (called 012 in YMTV and TPV), which share 75% amino acid identity with one another, to inhibit PKR from 15 different primate species. We first used a luciferase-based reporter, and found that YMTV and TPV K3 orthologs inhibited PKR in a species-specific manner and showed distinct PKR inhibition profiles. TPV 012 inhibited PKR from 11 primates, including humans, substantially better than YMTV 012. In contrast, both K3 orthologs inhibited the other four primate PKRs comparably well. Using YMTV 012 and TPV 012 hybrids, we mapped the region responsible for the differential PKR inhibition to the C- terminus of the K3 orthologs. Next, we generated chimeric vaccinia virus strains to investigate whether TPV K3 and YMTV K3 orthologs could rescue the replication of a vaccinia virus strain that lacks PKR inhibitors K3L and E3L. Virus replication in primate-derived cells generally correlated with the patterns observed in the luciferase-based assay. Together, these observations demonstrate that yatapoxvirus K3 orthologs have distinct PKR inhibition profiles and inhibit PKR in a species-specific manner, which may contribute to the differential susceptibility of primate species to yatapoxvirus infections.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Yatapoxvirus / EIF-2 Quinasa Límite: Animals / Humans Idioma: En Revista: Viruses Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Yatapoxvirus / EIF-2 Quinasa Límite: Animals / Humans Idioma: En Revista: Viruses Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...