Hydrodynamic disintegration effects assessment by CFD modelling integrated with bench tests.
J Environ Manage
; 367: 121948, 2024 Sep.
Article
en En
| MEDLINE
| ID: mdl-39083945
ABSTRACT
The hydrodynamic disintegration process depends, among others, on operational parameters like rotational speed or introduced energy. The study presents an interdisciplinary approach to the hydrodynamic disintegration parameters impact assessment on the internal processes and disintegration effects on the example of sewage sludge treatment. Three rotational speeds were considered, including fluid properties change at selected disintegration stages. Disintegration effects were measured in the bench tests. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) were measured before and after disintegration process. The assessment of the effects of disintegration employed the disintegration degree and the assessment of the course of methane production employed biochemical methane potential (BMP) tests. Fluid properties change during the disintegration stages does not cause a significant change in the flow structure. Due to the mathematical modelling results, at 1500 rpm no cavitation phenomenon was observed. Although, the bench tests results indicates, for the rotational speed 1500 rpm, organic compounds released to the liquid were characterised by higher susceptibility to biological decomposition than those released for 2500 and 3000 rpm (as suggested by the low SCOD/VFA values for 1500 rpm). Obtained results have confirmed, that the main phenomenon responsible for the disintegration effect is mechanical shredding not cavitation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Aguas del Alcantarillado
/
Eliminación de Residuos Líquidos
/
Hidrodinámica
/
Análisis de la Demanda Biológica de Oxígeno
/
Modelos Teóricos
Idioma:
En
Revista:
J Environ Manage
Año:
2024
Tipo del documento:
Article