Your browser doesn't support javascript.
loading
Influence of Rheological Modifications on Primary Network Chemical and Structural Cure Kinetics for an Interpenetrating Polymer Network Resin.
Chimenti, Robert V; Bensley, Kayla A; Lehman-Chong, Alexandra M; Engelhardt, Jamison D; Sepcic, Alyssa M; Tu, Jianwei; Stanzione, Joseph F; Lofland, Samuel E.
Afiliación
  • Chimenti RV; Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey, USA.
  • Bensley KA; Advanced Materials and Manufacturing Institute (AMMI), Rowan University, Glassboro, New Jersey, USA.
  • Lehman-Chong AM; Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey, USA.
  • Engelhardt JD; Advanced Materials and Manufacturing Institute (AMMI), Rowan University, Glassboro, New Jersey, USA.
  • Sepcic AM; Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, USA.
  • Tu J; Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey, USA.
  • Stanzione JF; Advanced Materials and Manufacturing Institute (AMMI), Rowan University, Glassboro, New Jersey, USA.
  • Lofland SE; Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, USA.
Appl Spectrosc ; : 37028241270637, 2024 Sep 10.
Article en En | MEDLINE | ID: mdl-39094000
ABSTRACT
The development of non-contact in situ techniques for monitoring cure kinetics has the potential to greatly improve both resin formulation and processing. We have recently shown that low-frequency Raman spectroscopy is a viable method for assessing resin structural cure kinetics and complements the traditional chemical conversion determined from the fingerprint region of the spectrum. In this work, we further evaluate the relationship between structural and chemical conversion by investigating two chemically identical yet rheologically different interpenetrating polymer network resin formulations. Rheological analysis demonstrates a relationship between structural conversion and storage modulus, which is not observed in the chemical conversion data. We show that one can produce master cure kinetics curves with comparable kinetic constants using both the chemical and structural conversion methodologies. Parametric analysis of the structural conversion, chemical conversion, and photorheological conversion was combined with a semi-empirical model for the storage shear modulus as a function of the extent of cure.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Appl Spectrosc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Appl Spectrosc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...