Your browser doesn't support javascript.
loading
Glial scarring around intra-cortical MEA implants with flexible and free microwires inserted using biodegradable PLGA needles.
Darlot, Fannie; Villard, Paul; Salam, Lara Abdel; Rousseau, Lionel; Piret, Gaëlle.
Afiliación
  • Darlot F; Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France.
  • Villard P; Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France.
  • Salam LA; Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France.
  • Rousseau L; ESIEE - ESYCOM Université Paris Est, Noisy-le-Grand, France.
  • Piret G; Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France.
Front Bioeng Biotechnol ; 12: 1408088, 2024.
Article en En | MEDLINE | ID: mdl-39104630
ABSTRACT

Introduction:

Many invasive and noninvasive neurotechnologies are being developed to help treat neurological pathologies and disorders. Making a brain implant safe, stable, and efficient in the long run is one of the requirements to conform with neuroethics and overcome limitations for numerous promising neural treatments. A main limitation is low biocompatibility, characterized by the damage implants create in brain tissue and their low adhesion to it. This damage is partly linked to friction over time due to the mechanical mismatch between the soft brain tissue and the more rigid wires.

Methods:

Here, we performed a short biocompatibility assessment of bio-inspired intra-cortical implants named "Neurosnooper" made of a microelectrode array consisting of a thin, flexible polymer-metal-polymer stack with microwires that mimic axons. Implants were assembled into poly-lactic-glycolic acid (PLGA) biodegradable needles for their intra-cortical implantation. Results and

Discussion:

The study of glial scars around implants, at 7 days and 2 months post-implantation, revealed a good adhesion between the brain tissue and implant wires and a low glial scar thickness. The lowest corresponds to electrode wires with a section size of 8 µm × 10 µm, compared to implants with the 8 µm × 50 µm electrode wire section size, and a straight shape appears to be better than a zigzag. Therefore, in addition to flexibility, size and shape parameters are important when designing electrode wires for the next generation of clinical intra-cortical implants.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Año: 2024 Tipo del documento: Article País de afiliación: Francia
...