Your browser doesn't support javascript.
loading
Sustainability-inspired upcycling of plastic waste into porous carbon nanobulks for water decontamination via peroxymonosulfate activation.
Pang, Kun; Fu, Fangyu; Wang, Haoqi; Ding, Shun; Fang, Yanfen; Liu, Xiang.
Afiliación
  • Pang K; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Fu F; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China; School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dong
  • Wang H; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Ding S; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Fang Y; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China. Electronic address: fangyf@ctgu.edu.cn.
  • Liu X; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China. Electronic address: xiang
Sci Total Environ ; 950: 175242, 2024 Nov 10.
Article en En | MEDLINE | ID: mdl-39117214
ABSTRACT
"White pollution" is regarded as one of the most serious problems in the natural environment. Thus greener recycling of plastic waste has attracted significant efforts in recent research. In this study, to kill two birds with one stone, a series of porous carbon nanobulks (PCNs) were synthesized from the pyrolysis of plastic waste (polyethylene terephthalate, PET) and inorganic salt (including NaHCO3, Na2CO3, NaCl, and ZnCl2) for sulfadiazine (SDZ) degradation via peroxymonosulfate (PMS) activation. PCNs-1 (co-calcinated from PET and NaHCO3) with a large number of CO and COOH active sites, which were in favor of PMS activation and electron transfer during the catalytic process, had shown the best catalytic activity for SDZ degradation. Significantly, PCNs-1 exhibited excellent universality, adaptability, and stability. The degradation pathways of SDZ were identified by the total content of organic carbon (TOC), and high-resolution mass spectrometry (HR-MS). The possible mechanism was proposed according to the anion effect, quenching experiments, electron paramagnetic resonance (EPR), and electrochemical analysis, indicating that radical (OH, SO4-, O2-) and non-radical (1O2 and e) species were the catalytically active species for SDZ decomposition in the PCNs-1/PMS system. Moreover, Ecological Structure-Activity-Relationship Model (ECOSAR) program and wheat seed cultivation experiments clearly demonstrated that the biotoxicity of SDZ could be effectively reduced by the PCNs-1/PMS system. Here we successfully upcycled plastic waste into high-value materials for efficient water decontamination.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China
...