Your browser doesn't support javascript.
loading
Molecular control via dynamic bonding enables material responsiveness in additively manufactured metallo-polyelectrolytes.
Lee, Seola; Walker, Pierre J; Velling, Seneca J; Chen, Amylynn; Taylor, Zane W; Fiori, Cyrus J B M; Gandhi, Vatsa; Wang, Zhen-Gang; Greer, Julia R.
Afiliación
  • Lee S; Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA. seolalee@caltech.edu.
  • Walker PJ; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Velling SJ; Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Chen A; Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Taylor ZW; Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Fiori CJBM; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Gandhi V; Division of Engineering and Applied Science, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Wang ZG; Kavli Nanoscience Institute, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
  • Greer JR; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, 91125, CA, USA.
Nat Commun ; 15(1): 6850, 2024 Aug 10.
Article en En | MEDLINE | ID: mdl-39127713
ABSTRACT
Metallo-polyelectrolytes are versatile materials for applications like filtration, biomedical devices, and sensors, due to their metal-organic synergy. Their dynamic and reversible electrostatic interactions offer high ionic conductivity, self-healing, and tunable mechanical properties. However, the knowledge gap between molecular-level dynamic bonds and continuum-level material properties persists, largely due to limited fabrication methods and a lack of theoretical design frameworks. To address this critical gap, we present a framework, combining theoretical and experimental insights, highlighting the interplay of molecular parameters in governing material properties. Using stereolithography-based additive manufacturing, we produce durable metallo-polyelectrolytes gels with tunable mechanical properties based on metal ion valency and polymer charge sparsity. Our approach unveils mechanistic insights into how these interactions propagate to macroscale properties, where higher valency ions yield stiffer, tougher materials, and lower charge sparsity alters material phase behavior. This work enhances understanding of metallo-polyelectrolytes behavior, providing a foundation for designing advanced functional materials.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...